EFECT Workshop 2021

Modeling sector coupling using the AnyMOD.jl framework Methods and applications for sustainable infrastructure planning

Leonard Göke, Jens Weibezahn, Christian von Hirschhausen

Agenda

1. Background

- 2. Methods
- 3. Applications
 - a. Power sector modeling
 - b. Energy system modeling

Model environment

Open-source software framework to generate models

build passing redecov 91% chat on gitter License MIT

Documentation

- STABLE last thoroughly tested and fully documented version
- **DEV** in-development version of the tool
- Developed within the H2020 project OSMOSE
- Synthesis between conventional power sector and energy system modeling to improve the representation of <u>sector integration</u> and <u>fluctuating renewables</u>

see Göke (2021a), AnyMOD.jl: A Julia package for creating energy system models, SoftwareX.

Agenda

1. Background

2. Methods

- Increase temporal detail and technological accuracy
- Decrease computational complexity to solve in reasonable time
- 3. Applications
 - a. Power sector modeling
 - b. Energy system modeling

Graph-based formulation enabling different resolutions within single model

see Göke (2021b), A graph-based formulation for modeling macro-energy systems, Applied Energy.

Novel mechanics for technology deployment to account for sector integration

Accelerate stochastic optimization of pathways with refined Benders decomposition (work in progress)

- Graph and matrix depict a model with two consecutive years of capacity expansion each including two single-stage scenarios based on climatic years
- Benders decomposition for this model greatly profits from parallelization

Agenda

- 1. Background
- 2. Methods
- 3. Applications
 - a. Power sector modeling
 - Model was developed for a project on decentralization in renewable energy systems
 - Focus on the power sector and a single year to achieve high spatial detail and an hourly resolution
 - Final energy demand derived from OpenENTRANCE scenarios from Auer et al.
 - b. Energy system modeling

Overview of energy carriers and technologies

EFECT Workshop 2021, 2 - 3. December 2021 Modeling sector coupling using the AnyMOD.jl framework

Hourly supply and demand of electricity

see Kendziorski et al. (2021), 100% Renewable Energy for Germany, DIW weekly report.

Grid expansion and net exports

DIW BERLIN

Agenda

- 1. Background
- 2. Methods
- 3. Applications
 - a. Power sector modeling
 - b. Energy system modeling
 - Scenarios for long-term development of the European energy system for the OSMOSE project
 - Optimizing a pathway from 2020 to 2050 across all sectors of the energy-system
 - Reduction of detail to ~400 time-steps and 96 regions

Overview of energy carriers and technologies

Technological options for space and district heating

Development of power and heat generation in EU27 (preliminary results)

DIW BERLIN

Transmission grid and consumption for hydrogen in 2050 (preliminary results)

Transmission grid and consumption for hydrogen in 2050 (preliminary results)

References

- Auer, H. et al. 2020. "Development and modelling of different decarbonization scenarios of the European energy system until 2050 as a contribution to achieving the ambitious 1.5°C climate target." *Elektrotechnik und Informationstechnik* 137(7):346–358.
- Göke, L. 2021b. "A graph-based formulation for modeling macro-energy systems." *Applied Energy* 301:117377.
- Göke, L. 2021b. "AnyMOD.jl: A Julia package for creating energy system models." *SoftwareX* 16:100871.
- Göke, L., M. Kendziorski, C. v. Hirschhausen, C. Kemfert. 2021, "Accounting for spatiality of renewables and storage in transmission planning." *Working paper*.
- Kendziorski et al. 2021. "100% Renewable Energy for Germany: Coordinated Expansion Planning Needed.". *DIW weekly report.*
- OSMOSE. 2019. "European Long-Term Scenarios Description." Project report.

DIW BERLIN

Gross inland consumption, excl. non-energy consumption

■ Oil and petroleum products ■ Hardcoal ■ Lignite ■ Natural gas ■ Bioenergy

Backup: Impact of temporal resolution on model performance

Results

- Selective variation of temporal resolution greatly reduces computational complexity but has a minor effect on results
- Reductions of the objective can be interpreted as the value of system inherent flexibility

Backup: Static and linear trust-region

- Variables of top-problem are
 - fixed, if heuristic solutions provide the same results
 - **limited**, if heuristic solutions provide different results
- Fixed variables are treated as parameters to speed-up top- and sub-problem
- Bounds on limited variables are removed once gap reaches a certain threshold

